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Received 23 May 1989 

Abstract. A geometrical model for the study of fragmentation dynamics is introduced. 
Detailed statistical analysis of the fragment distribution for percolation clusters, Sierpiriski 
carpets and Menger sponges on square and cubic lattices is given and static and dynamic 
critical exponents are calculated. 

The dynamic behaviour of many phenomena occurring in nature exhibits fragmentation 
[l-31. In these cases the system makes a continuous or sudden transition from a 
connected state to a disconnected state characterised by fragments of diverse sizes. 
The disconnected or fragmented state may be described if the function n ( s ,  t )  giving 
the number of fragments of size s at time t is known. Fragmentation may occur in 
processes without variation of mass [ l ]  as well as in growth processes [2] or in 
consumption processes [3]. 

In this letter we present results of extensive numerical simulations of fragmentation 
dynamics in porous (fractal) systems on square and cubic lattices. Our fragmentation 
model simulates the attack of a system by a kind of corrosive rain. The units (drops) 
that form this rain may be considered as molecules of a chemical reagent in some 
corrosion process or, alternately, a mechanical stress acting randomly on a system or 
again a combination of both chemical and mechanical agents in a stress-assisted 
corrosion. In addition, the drops may be a pathogenic element/plague acting on a 
tissue/plantation. To allow numerical simulations on large lattices and to perform a 
detailed statistical analysis of the results, we avoid intricacies and choose a fragmenta- 
tion algorithm governed by the following simple laws. 

(A) If a drop hits a site i of the system whose number q ( i )  of nearest neighbours 
satisfies q( i )  < 2d, that point is eliminated (the system is embedded in a d-dimensional 
square lattice and 2d is the lattice coordination number). Using the analogy with a 
chemical attack, we consider that a drop x combines irreversibly with the site i giving 
a reaction product xi. These products are deleted in the course of the simulation since 
they are a different species. 

(B) A point i of the system survives the attack if q( i )  = 2d. 
According to these rules, points weakly connected to the system (in the sense 

q < 2d)  are always vulnerable to the attack, while points with maximal coordination 
( q  = 2d)  are immune to the attack. Evidently, the neighbourhood of the site i changes 
with the time and in a later stage this site will be consumed. When we apply this 
algorithm to a system embedded in a two-dimensional lattice, the rain is assumed to 
fall along the third dimension, and when we apply it to a system embedded in a cubic 
lattice (a three-dimensional hyperplane), the rain is falling along a fourth dimension. 
The following observations are pertinent. As in a true rain, it is considered possible 
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that a consumed site may be visited many times by raindrops till the end of the 
simulation. Thus, we have a direct correspondence between the physical time T and 
the computational time t = total number of raindrops that fell on the system: t = F x T, 
where F is the number of raindrops falling per unit time. The equation of motion of 
this fragmentation process is (dM/dt )  = - c  x m, where M is the mass of the system, 
c is a constant (dependent on parameters or macroscopic variables relevant to a 
particular situation) and the active mass or perimeter m is the set { i E systemIq( i) < 2d). 

The porous systems studied in this letter are percolation clusters (PC) in d = 2,3 
at the respective percolation thresholds [4], Sierpiliski carpets (sc) in d = 2 and Menger 
sponges (MS)  in d = 3  [5, p 1441. The fractal dimensions for these systems are, 
respectively, 1.896, 2.5, (ln8/ln3) = 1.8928 and (ln20/ln3) = 2.7268. The lattice sizes 
were L = 2001 (d = 2) and L = 101 (d  = 3)  for PC, L = 2187 (corresponding to an initial 
mass MO = 8' = 2 097 152) for sc and L = 243 (MO = 20' = 3 200 000) for MS. We have 
examined the fragment distribution function n(s ,  t )  as well as the time dependence of 
the mean fragment size, (s), on the total number of fragments, N (  t) ,  and the diversity 
of the fragments, A( t) ,  which is the number of different fragment sizes present at time 
t. The following scaling relations were observed before the maximum in N ( r )  was 
reached: N ( t )  - t@ (figures 1 and 2); n(s ,  t )  - t", for small values of s (figures 3 and 
4) and (s) - t V Z  (figure 5) .  Furthermore, n(s ,  t )  - s - ~  (figure 6) for t not too far from 
the time of maximal fragmentation. Figures 1-6 refer to results averaged on ten similar 
experiments. The critical exponents @, W, 2 and 0 are shown in table 1.  For com- 
parison we add in this table the exponents for fragmentation of two-dimensional 
Euclidean rings [3]. An examination of table 1 shows that the three dynamic exponents 
@, W and Z and the static exponent 0 for PC and SUMS are weakly dependent on d. 
The relative uncertainties on these exponents are (A@/@) = 0.1, ( A  W /  W )  = (AZ/Z) = 
0.2 and (A@/@) = 0.15. The eponents @ and 0 for rings are close to the values observed 
for PC. The possibility that @ * W = 1 also for rings is not excluded since the simulations 
with these systems were made on small lattices (L= 100). However, the critical 
exponents for sc and MS are significantly different from those obtained for PC and 
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Figure 1. The total number of fragments (0) and 
the diversity ( A )  as a function of time for two- 
dimensional percolation clusters on a square lattice 
with edge L = 2001. The dashed line corresponds to 
a slope of 1.06 (see text for more details). 
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Figure 2. The same as in figure 1 but for Menger 
sponges on cubic lattices (L = 243). Initial mass of 
the sponges: MO = 3 200 000. The slope of the dashed 
line is 2.24. 
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Figure 3. Time dependence of the distribution func- 
tion n(s,  t )  for fragment sizes s = 2 (A),  4 (U), 10 
(0) and 20 (+), calculated from the same simulations 
as in figure 1. Full lines have the slope 1.07. 

Figure 4. The same as in figure 3 but for Menger 
sponges in d = 3. Each full line in this case has a 
different slope (compare with figure 3 and see text 
for details). 
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Figure 5. The average size (s) of the fragments as a 
function of the time for the clusters of figure 2. The 
straight line corresponds to an asymptotic slope of 
-2.69. slope of -1.16. 

Figure 6. The size dependence of the distribution 
function n(s ,  1 )  at the time of maximal fragmentation 
for Menger sponges (d  = 3). The straight line has a 

rings. The large differences between the exponents for PC and sc in d = 2 (systems 
with almost the same fractal dimension) show the importance of the topological 
properties of the system in the fragmentation process. Another remarkable fact is that 
the exponent W for sc and MS depends on s, contrary to what is observed with the 
other systems. This fact is illustrated in figures 3 and 4. The dependence of W on s, 
for 1 s s G 20 is W = 2.27 x for sc and W = 3.1 x so,26 for MS. The results of table 
1 indicate that the total mass M ( t )  = N (  t )  x (s) decreases in the scaling region as 
M - tA,  with A = @ - 2 assuming values between -0.2 and -0.45. Figures 1 and 2 
show the qualitative difference between the behaviours of the diversity for PC and 
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Table 1. The exponents appearing in the scaling relations N - f*, n(s, t )  - f w, (s)- I-=;  
and n ( s ,  r ) - ~ - ~  (at the time of maximal fragmentation). These numbers are average 
values obtained from a best fit using ten similar experiments. See text for more details. 

System aJ W Z 0 

p c ( d = 2 )  1.06 1.07 1.23 0.45 
~ c ( d = 3 )  0.981 1.02 1.15 0.52 
s c ( d = 2 )  2.33 2.27-5.37 2.54 0.926 
M S ( d = 3 )  2.24 3.1-6.6 2.69 1.16 
Rings ( d  = 2) 1.2 f 0.3 1.8*0.4 1.5k0.4 0.6 f 0.1 

MS(SC).  Although both systems in these figures have MO (and A maximum) of the 
same order, the increase of A ( ? )  near the maximum is much faster for MS (sc) than 
for PC. The behaviour of A(?) on the left (right) side of A maximum (dotted lines in 
figures 1 and 2) may be described by a power law of t with the exponents 0.73 (-1.43), 
0.67 (-1.36); 4.19 (-3.36) and 4.53 (-4.61) for PC in d = 2,3: sc and MS, respectively. 
Again, there are no appreciable differences between the corresponding exponents for 
d = 2  and d = 3 .  On the other hand, the fragment-size distribution function n(s ,  t )  
may be described to the right of their maximum by a power law of t (dotted lines in 
figures 3 and 4) with an exponent W* which seems independent of s, for small s. The 
values of this exponent are approximately -6, -10; -10 and -14 for PC in d = 2 ,3 ;  
sc and MS, respectively. We note, however, that this scaling occurs in a much more 
restricted time interval than that observed to the left of the extremum of n(s ,  t ) .  
Furthermore, in the scaling region governed by W*, (s) does not present power-law 
scaling in t .  The dependence on the lattice size L of the exponents of table 1 was also 
investigated: a, W, Z and O(PC) stabilised around the reported values more rapidly 
than O(sc) and O(MS). The average percentage difference between the exponents of 
table 1 for d = 2 ( L  > 2000) and the corresponding exponents for L = 300 is 21 O/O. 

The maximum in the distribution function n(s ,  t )  occurs at a time t [ s ]  dependent 
on the fragment size s (figures 3 and 4). We have found that max- n ( s ,  t ) -  s-* at 
t = t[s] and t[s] - s - ~ .  The exponents and fl are given in table 2. Furthermore, the 
maximal values observed for N ( t )  and A ( ? )  (figures 1 and 2) are clearly dependent 
on the initial mass MO. Simulations realised with PC and sc in d = 2 with masses 
varying by a factor near 200 showed that max - N - M t  and max - A  - M,h, with K 
and A given in table 3. The maxima in N and A occur at times T [ N ]  and T [ A ] ,  
respectively. These times also scale with the initial mass MO as T [ N ]  - ML and 
T [ A ] - M r ,  and these exponents are also shown in table 3. Recent estimates of the 
exponents K and r using renormalisation group calculations on small cells [6] are in 
agreement with the results of table 3. 

Table2. The exponents Y and R from the scaling relations max - n ( s ,  t )  - s-p at r [ s ]  - s-" 
(see text). 

PC ( d = 2 )  PC ( d = 3 )  sc ( d  = 2) MS ( d  = 3 )  

Y 1.67 1.79 1.81 2.04 
R 0.41 0.55 0.2 15 0.165 
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Table 3. The exponents K, A, rand I which appear in the scaling relations max - N - MF , 
max - A  - Mt, T[ NI - Mi and T[A] - Mf (details in text). 

PC(d=2) s c ( d = 2 )  

K 0.646 1.01 
A 0.313 0.498 
r 0.67 1.04 

0.53 0.997 - - 

Another quantity of interest is the integrated fragment distribution, N ( > s ) ,  which 
gives the number of fragments with size greater than s [7]. This function has been 
studied for pc and sc in d = 2 in the neighbourhood of the time of maximal fragmenta- 
tion. In these cases N ( > s )  - s - ~ ,  with B assuming the values 0.53 b0 .03  for PC, and 
0.65k0.04 for sc. The power-law dependence of N ( > s )  on s implies the absence of 
a length scale on a large interval of s and is characteristic of a fractal distribution. In 
fact, these numbers indicate that the fragments in d = 2 at the time of maximal 
fragmentation (or close to it) are distributed on fractal sets of dimension 2B [5, ch 131; 
thus we have the fractal dimensions 1.06*0.06 for FT, and 1.3k0.08  for sc. We note 
in passing that the corresponding value of B for Euclidean rings is 0.55*0.04 [3]. 
Thus, these static exponents B are close to the exponents 0 given in table I. 

The results reported in this letter for PC are in agreement with a dynamic scaling 
proposed by Vicsek and Family for cluster-cluster aggregation [8]. For our fragmenta- 

w -e tion model this scaling is n(s ,  t )  = t s / ( s / t Z ) ,  with /(x) satisfying /(x) =constant, 
for x<< 1, and p(x)<< 1,  for x >> 1 .  From this scaling it follows that the exponent @ 
introduced in the third paragraph is given by @ = W - Z( 1 - 0). 
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